直流(變壓器直流電阻測試儀儀)母線在離心機(jī)上的應(yīng)用
瀏覽次數(shù):3306發(fā)布日期:2010-11-05
直流(變壓器直流電阻測試儀)母線在離心機(jī)上的應(yīng)用
在化工企業(yè)電氣傳動中,離心機(jī)的變頻傳動應(yīng)用非常普遍,由于工藝和驅(qū)動設(shè)備的各種原因,再生能量的現(xiàn)象經(jīng)常發(fā)生,在通用變頻器中,對再生能量zui常用的處理方式有兩種:(1)耗散到直流回路中人為設(shè)置的與電容器并聯(lián)的“制動電阻”中,稱之為動力制動狀態(tài);(2)使之回饋到電網(wǎng),則稱之為回饋制動狀態(tài)(又稱再生制動狀態(tài))。直流共母線的原理是基于通用變頻裝置均采用交-直-交變頻方式,當(dāng)電機(jī)處于制動狀態(tài)時,其制動能量反饋到直流側(cè),為了更好的處理反饋制動能量,人們采用了把各變頻裝置的直流側(cè)連接起來的方式。譬如當(dāng)一臺變頻器處于制動而另一臺變頻器處于加速狀態(tài),這樣變壓器直流電阻測試儀能量可以互補(bǔ)。本文提出了一種通用變頻器在化工企業(yè)離心機(jī)中共直流母線的方案,并闡述了其在離心機(jī)上回饋單元的進(jìn)一步應(yīng)用。
目前直流共母線有多種方式:
(1)變壓器直流電阻測試儀公用一個獨(dú)立的整流器
該整流單元可以是不能逆變,也可以是可逆變的。前者能量通過外接制動電阻消耗掉,后者可以充分地將直流母線上的多余能量直接反饋到電網(wǎng)中來,具有更好的節(jié)能、環(huán)保意義,缺點是價格比前者要高。
(2)變壓器直流電阻測試儀大變頻單元接入電網(wǎng)
小變頻器公用大變頻器的直流母線,小變頻器不需接入電網(wǎng),故也不需要整流模塊,大變頻器外接制動電阻。
(3)變壓器直流電阻測試儀每個變頻單元各自接入電網(wǎng)
每個變頻單元均帶有整流、逆變回路并外接制動電阻,直流母線相互連接起來。這種情形多用于各變頻單元功率接近的情況。解體后還可以獨(dú)立使用,互不影響。
本文介紹的直流共母線為第三種方式,相比前兩種有很大優(yōu)勢:
a、共用直流母線可以大大減少制動單元的重復(fù)配置,結(jié)構(gòu)簡單合理,經(jīng)濟(jì)可靠。
b、共用直流母線的中間直流電壓恒定,電容并聯(lián)儲能容量大,能減少電網(wǎng)的波動。
c、各電動機(jī)工作在不同狀態(tài)下,能量回饋互補(bǔ),優(yōu)化了系統(tǒng)的動態(tài)特性。
d、各個變頻器在電網(wǎng)中產(chǎn)生的不同次諧波干擾可以互相抵消,減少電網(wǎng)的諧波畸變率。
2改造前變頻調(diào)速系統(tǒng)方案
2.1離心機(jī)控制系統(tǒng)介紹
變壓器直流電阻測試儀改造的離心機(jī)共12臺、每臺控制系統(tǒng)都是一樣。變頻器為艾默生EV2000系列22kW,恒轉(zhuǎn)矩型,回饋單元皆為加能的IPC-PF-1S回饋制動單元,所有控制系統(tǒng)集中在一個配電室中。兩臺離心機(jī)共用一個GGD控制柜,限于篇幅只畫出其中四臺,其余八臺與此類似。系統(tǒng)圖如圖1所示。
圖1 改造前變頻器及制動單元系統(tǒng)原理圖
由圖1可知,每一臺變頻器需要一臺回饋制動單元,各自的控制系統(tǒng)*獨(dú)立,
2.2剎車時制動工作分析
當(dāng)離心機(jī)剎車時,電動機(jī)將處于再生發(fā)電制動狀態(tài),系統(tǒng)中所儲存的機(jī)械能經(jīng)電動機(jī)轉(zhuǎn)換成電能,通過逆變器的六個續(xù)流二極管回送到變頻器的直流回路中。此時的逆變器處于整流狀態(tài)。這時,如果變頻器中沒采取消耗能量的措施,這部分能量將導(dǎo)致中間回路的儲能電容器的電壓上升,此時電容的直流母線電壓抬升,當(dāng)升至680V時,制動單元開始工作,即回饋多余的電能到電網(wǎng)側(cè),此時單臺變頻器直流母線電壓維持在680V(有的690V)以下,變頻器不至于報過電壓故障。單臺時變頻器制動單元剎車時的電流曲線如圖2,剎車時間為3分種,測試儀器為FLUKE 43B 單相電能質(zhì)量分析儀,分析軟件為《FlukeView Power Quality Analyzer Version 3.10.1》。
圖2 制動單元工作時的電流曲線
由此可見每次剎車時,制動單元必然工作,zui大電流達(dá)27A。而制動單元的額定電流為4。顯然制動單元處于半載狀態(tài)。
3改造后變頻調(diào)速系統(tǒng)方案
3.1共直流母線的處置方法
采用共用直流母線很重要的一點就是上電時必需充分考慮到變頻器的控制、傳動故障、負(fù)載特性和輸入主回路維護(hù)等。該方案包括3相進(jìn)線(堅持同一相位)、直流母線、通用變頻器組、公共制動單元或能量回饋裝置和一些附屬元件。 對于通用變頻器而言,圖3所示為在其中一種應(yīng)用比較廣泛的方案。選用第三種改造方案后的主電路系統(tǒng)圖如圖3,圖3中空氣開關(guān)Q1至Q4是每個變頻器的進(jìn)線保護(hù)裝置,KM1至KM4為每臺變頻器的上電接觸器。KMZ1至KMZ3為直流母線的并聯(lián)接觸器。1#、2#離心機(jī)共用一個制動單元,組成一組,3#、4#離心機(jī)共用一個制動單元,組成一組,當(dāng)兩組都正常時可以并接在一起。同時也是基于現(xiàn)場操作工人的工作時序,1#、2#離心機(jī)不同時剎車,3#、4#離心機(jī)不同時剎車。正常工作時一般為兩臺離心機(jī)1#、3#為一組,2#、4#為一組,四臺離心機(jī)一般不會同時剎車。由于實際工作現(xiàn)場的復(fù)雜環(huán)境往往會導(dǎo)致電網(wǎng)的動搖并發(fā)生高次諧波。也可用于增加電源阻抗并協(xié)助吸收附近設(shè)備投入工作時產(chǎn)生的浪涌電壓和主電源的電壓尖峰,從而zui終維護(hù)變頻器的整流單元。每臺變頻器也可以使用進(jìn)線電抗器來有效地防止這些因素對變頻器的影響。本項目改造中由于原設(shè)備沒有裝進(jìn)線電抗器,故并沒有畫出進(jìn)線電抗器及其他諧波治理裝置。
圖3 改造后變頻器及制動單元系統(tǒng)原理圖
3.2控制系統(tǒng)的方案
控制線路如圖4,四臺變頻器上電后,每臺變頻器運(yùn)行準(zhǔn)備好后,設(shè)置變頻器故障繼電器輸出端子的輸出選項為“變頻器運(yùn)行準(zhǔn)備好”,只有變頻器上電,并且正常以后,才可以并接在一起,如任意一臺有故障,直流母線接觸器就不吸合。變頻器故障繼電器輸出端子
TA、TC為常開觸點,上電后變頻器“變頻器運(yùn)行準(zhǔn)備好”,各變頻器的TA、TC吸合,直流母線并聯(lián)接觸器依次吸合。否則接觸器就斷開。
圖4 改造后的制動單元并聯(lián)控制原理圖
3.3該方案特點
(1)使用一個完整的變頻器,而不是單純的整流橋加多個逆變器方案。
(2) 不需要有分離的整流橋、充電單元、電容組和逆變器。
(3)每一個變頻器都可以單獨(dú)從直流母線中分離進(jìn)去而不影響其他系統(tǒng)。
(4)通過連鎖接觸器來控制變頻器的DC共用母線的聯(lián)絡(luò)。
(5)連鎖控制來保護(hù)掛在直流母線上的變頻器的電容單元。
(6) 所有掛在母線上的變頻器必需使用同一個三相電源。
(7) 變頻器故障后快速地與 DC 母線斷開以進(jìn)一步縮小變頻器故障范圍。
3.4變頻器主要參數(shù)設(shè)置
運(yùn)行命令通道選擇 F0.03=1
zui高操作頻率設(shè)定 F0.05=50
加速時間1設(shè)定 F0.10=300
減速時間1設(shè)定 F0.11=300
故障繼電器輸出選擇 F7.12=15
AO1輸出功能 F7.26=2
3.5改造后的測試數(shù)據(jù)
停車時進(jìn)線電壓: 3PH 380VAC
母線電壓: 530VDC
直流母線電壓: 650V
當(dāng)一臺升速時,母線電壓降低,此時另一臺降速,直流母線電壓在540~670V波動,制動單元在此時沒有開啟,制動單元一般工作的DC電壓為680V如圖5測試分析。
圖5 改造后的制動單元工作電流監(jiān)視圖
4節(jié)能分析
回饋制動單元相比電阻能耗制動本身就是一種節(jié)能的應(yīng)用,可是要求每臺變頻器需要剎車時配用一臺制動單元。必然要求有幾臺變頻器就得配幾臺制動單元,而制動單元的價格和變頻器價格相差不大,工作持續(xù)率卻不是很高。共用直流母線變頻器驅(qū)動在
離心機(jī)上的廣泛應(yīng)用,較好的解決了當(dāng)一個變頻器升速,另一個變頻器剎車時,均衡了“一個吃不飽、一個吃的吐”,的問題,該方案減少了制動單元的重復(fù)設(shè)置,降低了工作次數(shù)的,也減少了對電網(wǎng)的干擾次數(shù),提高了電網(wǎng)的電能質(zhì)量。在減少設(shè)備投入,增加設(shè)備使用率,節(jié)約設(shè)備、節(jié)能方面有特別重要的意義。
5結(jié)束語
通用變頻器共用直流母線的廣泛應(yīng)用,較好的解決了電能消耗與電能回饋時間段不同步這個問題,對減少設(shè)備投入、降低電網(wǎng)干擾和提高設(shè)備利用率有特別重要的意義。